Learning to Label Affordances from Simulated and Real Data

نویسندگان

  • Timo Lüddecke
  • Florentin Wörgötter
چکیده

An autonomous robot should be able to evaluate the affordances that are offered by a given situation. Here we address this problem by designing a system that can densely predict affordances given only a single 2D RGB image. This is achieved with a convolutional neural network (ResNet), which we combine with refinement modules recently proposed for addressing semantic image segmentation. We define a novel cost function, which is able to handle (potentially multiple) affordances of objects and their parts in a pixel-wise manner even in the case of incomplete data. We perform qualitative as well as quantitative evaluations with simulated and real data assessing 15 different affordances. In general, we find that affordances, which are wellenough represented in the training data, are correctly recognized with a substantial fraction of correctly assigned pixels. Furthermore, we show that our model outperforms several baselines. Hence, this method can give clear action guidelines for a robot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affordances and limitations of technology: Voices from EFL teachers and learners

With the developments of new technologies appearing very quickly, the attention has been focused more on technology than learning. English centers and institutes have mostly been busy accommodating new programs and technologies and hence have not spent enough time to evaluate the CALL programs and technologies employed to find their affordances and limitations. The present study was an attempt ...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

What Can I Not Do? Towards an Architecture for Reasoning about and Learning Affordances

This paper describes an architecture for an agent to learn and reason about affordances. In this architecture, Answer Set Prolog, a declarative language, is used to represent and reason with incomplete domain knowledge that includes a representation of affordances as relations defined jointly over objects and actions. Reinforcement learning and decision-tree induction based on this relational r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.08872  شماره 

صفحات  -

تاریخ انتشار 2017